125 research outputs found

    [Viewpoint:] Postponing Heat Death in Periodically Driven Systems

    Get PDF
    An exponential suppression of heating has been observed in a periodically driven optical lattice, opening up an opportunity to engineer new states of matter

    Creating topological interfaces and detecting chiral edge modes in a 2D optical lattice

    Full text link
    We propose and analyze a general scheme to create chiral topological edge modes within the bulk of two-dimensional engineered quantum systems. Our method is based on the implementation of topological interfaces, designed within the bulk of the system, where topologically-protected edge modes localize and freely propagate in a unidirectional manner. This scheme is illustrated through an optical-lattice realization of the Haldane model for cold atoms, where an additional spatially-varying lattice potential induces distinct topological phases in separated regions of space. We present two realistic experimental configurations, which lead to linear and radial-symmetric topological interfaces, which both allows one to significantly reduce the effects of external confinement on topological edge properties. Furthermore, the versatility of our method opens the possibility of tuning the position, the localization length and the chirality of the edge modes, through simple adjustments of the lattice potentials. In order to demonstrate the unique detectability offered by engineered interfaces, we numerically investigate the time-evolution of wave packets, indicating how topological transport unambiguously manifests itself within the lattice. Finally, we analyze the effects of disorder on the dynamics of chiral and non-chiral states present in the system. Interestingly, engineered disorder is shown to provide a powerful tool for the detection of topological edge modes in cold-atom setups.Comment: 18 pages, 21 figure

    Pressure tuning of light-induced superconductivity in K3C60

    Full text link
    Optical excitation at terahertz frequencies has emerged as an effective means to manipulate complex solids dynamically. In the molecular solid K3C60, coherent excitation of intramolecular vibrations was shown to transform the high temperature metal into a non-equilibrium state with the optical conductivity of a superconductor. Here we tune this effect with hydrostatic pressure, and we find it to disappear around 0.3 GPa. Reduction with pressure underscores the similarity with the equilibrium superconducting phase of K3C60, in which a larger electronic bandwidth is detrimental for pairing. Crucially, our observation excludes alternative interpretations based on a high-mobility metallic phase. The pressure dependence also suggests that transient, incipient superconductivity occurs far above the 150 K hypothesised previously, and rather extends all the way to room temperature.Comment: 33 pages, 17 figures, 2 table

    Topological Floquet engineering of twisted bilayer graphene

    Get PDF
    We investigate the topological properties of Floquet-engineered twisted bilayer graphene above the so-called magic angle driven by circularly polarized laser pulses. Employing a full Moiré-unit-cell tight-binding Hamiltonian based on first-principles electronic structure, we show that the band topology in the bilayer, at twisting angles above 1.05∘, essentially corresponds to the one of single-layer graphene. However, the ability to open topologically trivial gaps in this system by a bias voltage between the layers enables the full topological phase diagram to be explored, which is not possible in single-layer graphene. Circularly polarized light induces a transition to a topologically nontrivial Floquet band structure with the Berry curvature analogous to a Chern insulator. Importantly, the twisting allows for tuning electronic energy scales, which implies that the electronic bandwidth can be tailored to match realistic driving frequencies in the ultraviolet or midinfrared photon-energy regimes. This implies that Moiré superlattices are an ideal playground for combining twistronics, Floquet engineering, and strongly interacting regimes out of thermal equilibrium

    Superconducting fluctuations observed far above T<sub>c</sub> in the isotropic superconductor K<sub>3</sub>C<sub>60</sub>

    Get PDF
    Alkali-doped fullerides are strongly correlated organic superconductors that exhibit high transition temperatures, exceptionally large critical magnetic fields and a number of other unusual properties. The proximity to a Mott insulating phase is thought to be a crucial ingredient of the underlying physics, and may also affect precursors of superconductivity in the normal state above Tc_\text{c}. We report on the observation of a sizeable magneto-thermoelectric (Nernst) effect in the normal state of K3_3C60_{60}, which displays the characteristics of superconducting fluctuations. The anomalous Nernst effect emerges from an ordinary quasiparticle background below a temperature of 80K, far above Tc_\text{c} = 20K. At the lowest fields and close to Tc_\text{c}, the scaling of the effect is captured by a model based on Gaussian fluctuations. The temperature up to which we observe fluctuations is exceptionally high for a three-dimensional isotropic system, where fluctuation effects are usually suppressed

    Microscopic theory for the light-induced anomalous Hall effect in graphene

    Full text link
    We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature. This robust and general finding enables the simulation of electrical transport from light-induced Floquet-Bloch bands in an experimentally relevant parameter regime and creates a pathway to designing ultrafast quantum devices with Floquet-engineered transport properties

    Floquet dynamics in light-driven solids

    Full text link
    We demonstrate how the properties of light-induced electronic Floquet states in solids impact natural physical observables, such as transport properties, by capturing the environmental influence on the electrons. We include the environment as dissipative processes, such as inter-band decay and dephasing, often ignored in Floquet predictions. These dissipative processes determine the Floquet band occupations of the emergent steady state, by balancing out the optical driving force. In order to benchmark and illustrate our framework for Floquet physics in a realistic solid, we consider the light-induced Hall conductivity in graphene recently reported by J.~W.~McIver, et al., Nature Physics (2020). We show that the Hall conductivity is estimated by the Berry flux of the occupied states of the light-induced Floquet bands, in addition to the kinetic contribution given by the average band velocity. Hence, Floquet theory provides an interpretation of this Hall conductivity as a geometric-dissipative effect. We demonstrate this mechanism within a master equation formalism, and obtain good quantitative agreement with the experimentally measured Hall conductivity, underscoring the validity of this approach which establishes a broadly applicable framework for the understanding of ultrafast non-equilibrium dynamics in solids

    Giant resonant enhancement for photo-induced superconductivity in K3_3C60_{60}

    Full text link
    Photo-excitation at terahertz and mid-infrared frequencies has emerged as a new way to manipulate functionalities in quantum materials, in some cases creating non-equilibrium phases that have no equilibrium analogue. In K3_3C60_{60}, a metastable zero-resistance phase was documented with optical properties and pressure dependences compatible with non-equilibrium high temperature superconductivity. Here, we report the discovery of a dominant energy scale for this phenomenon, along with the demonstration of a giant increase in photo-susceptibility near 10 THz excitation frequency. At these drive frequencies a metastable superconducting-like phase is observed up to room temperature for fluences as low as ~400 μJ/cm2\mu J/cm^2. These findings shed light on the microscopic mechanism underlying photo-induced superconductivity. They also trace a path towards steady state operation, currently limited by the availability of a suitable high-repetition rate optical source at these frequencies.Comment: 35 pages, 13 figures, including supplementar

    Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice

    Full text link
    Dirac points lie at the heart of many fascinating phenomena in condensed matter physics, from massless electrons in graphene to the emergence of conducting edge states in topological insulators [1, 2]. At a Dirac point, two energy bands intersect linearly and the particles behave as relativistic Dirac fermions. In solids, the rigid structure of the material sets the mass and velocity of the particles, as well as their interactions. A different, highly flexible approach is to create model systems using fermionic atoms trapped in the periodic potential of interfering laser beams, a method which so far has only been applied to explore simple lattice structures [3, 4]. Here we report on the creation of Dirac points with adjustable properties in a tunable honeycomb optical lattice. Using momentum-resolved interband transitions, we observe a minimum band gap inside the Brillouin zone at the position of the Dirac points. We exploit the unique tunability of our lattice potential to adjust the effective mass of the Dirac fermions by breaking inversion symmetry. Moreover, changing the lattice anisotropy allows us to move the position of the Dirac points inside the Brillouin zone. When increasing the anisotropy beyond a critical limit, the two Dirac points merge and annihilate each other - a situation which has recently attracted considerable theoretical interest [5-9], but seems extremely challenging to observe in solids [10]. We map out this topological transition in lattice parameter space and find excellent agreement with ab initio calculations. Our results not only pave the way to model materials where the topology of the band structure plays a crucial role, but also provide an avenue to explore many-body phases resulting from the interplay of complex lattice geometries with interactions [11, 12]
    corecore